Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.029
Filtrar
1.
J Phys Condens Matter ; 36(27)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38565130

RESUMO

Holey Graphene(HG) is a widely used graphene material for the synthesis of high-purity and highly crystalline materials. The electronic properties of a periodic distribution of lattice holes are explored here, demonstrating the emergence of flat bands. It is established that such flat bands arise as a consequence of an induced sublattice site imbalance, i.e. by having more sites in one of the graphene's bipartite sublattice than in the other. This is equivalent to the breaking of a path-exchange symmetry. By further breaking the inversion symmetry, gaps and a nonzero Berry curvature are induced, leading to topological bands. In particular, the folding of the Dirac cones from the hexagonal Brillouin zone (BZ) to the holey superlattice rectangular BZ of HG, with sizes proportional to an integerntimes the graphene's lattice parameter, leads to a periodicity in the gap formation such thatn≡0(mod 3). A low-energy hamiltonian for the three central bands is also obtained revealing that the system behaves as an effectiveα-T3graphene material. Therefore, a simple protocol is presented here that allows for obtaining flat bands at will. Such bands are known to increase electron-electron correlation effects. Therefore, the present work provides an alternative system that is much easier to build than twisted systems, allowing for the production of flat bands and potentially highly correlated quantum phases.

2.
Front Plant Sci ; 15: 1360381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576794

RESUMO

Introduction: Climate change is impacting the wine industry by accelerating ripening processes due to warming temperatures, especially in areas of significant grape production like California. Increasing temperatures accelerate the rate of sugar accumulation (measured in °Brix) in grapes, however this presents a problem to wine makers as flavor profiles may need more time to develop properly. To alleviate the mismatch between sugar accumulation and flavor compounds, growers may sync vine cultivars with climates that are most amenable to their distinct growing conditions. However, the traits which control such cultivar specific climate adaptation, especially for °Brix accumulation rate, are poorly understood. Recent studies have shown that higher rates of fruit development and sugar accumulation are predicted by larger phloem areas in different organs of the plant. Methods: Here we test this phloem area hypothesis using a common garden experiment in the Central Valley of Northern California using 18 cultivars of the common grapevine (Vitis vinifera) and assess the grape berry sugar accumulation rates as a function of phloem area in leaf and grape organs. Results: We find that phloem area in the leaf petiole organ as well as the berry pedicel is a significant predictor of °Brix accumulation rate across 13 cultivars and that grapes from warm climates overall have larger phloem areas than those from hot climates. In contrast, other physiological traits such as photosynthetic assimilation and leaf water potential did not predict berry accumulation rates. Discussion: As hot climate cultivars have lower phloem areas which would slow down brix accumulation, growers may have inadvertently been selecting this trait to align flavor development with sugar accumulation across the common cultivars tested. This work highlights a new trait that can be easily phenotyped (i.e., petiole phloem area) and be used for growers to match cultivar more accurately with the temperature specific climate conditions of a growing region to obtain satisfactory sugar accumulation and flavor profiles.

3.
Foods ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611356

RESUMO

Several studies have highlighted the beneficial effects of consuming red raspberries on human health thanks to their high content of phytochemicals. However, the products used in these studies, both in the raw or freeze-dried form, were not fully characterized for nutrient and phytochemical composition. In this study, we aimed to determine the nutrient and non-nutrient compounds present in a freeze-dried red raspberry powder widely used by the food industry and consumers. The main sugars identified were fructose (12%), glucose (11%), and sucrose (11%). Twelve fatty acids were detected, with linoleic acid (46%), α-linolenic acid (20%), and oleic acid (15%) being the most abundant. Regarding micronutrients, vitamin C was the main hydro-soluble vitamin, while minerals, potassium, phosphorous, copper and magnesium were the most abundant, with concentrations ranging from 9 up to 96 mg/100 g, followed by manganese, iron and zinc, detected in the range 0.1-0.9 mg/100 g. Phytochemical analysis using UHPLC-DAD-HR-MS detection revealed the presence of Sanguiin H6 (0.4%), Lambertianin C (0.05%), and Sanguiin H-10 isomers (0.9%) as the main compounds. Among anthocyanins, the most representative compounds were cyanidin-3-sophoroside, cyanidin-3-glucoside and cyanidin-3-sambubioside. Our findings can serve as a reliable resource for the food industry, nutraceutical applications and for future investigations in the context of human health.

4.
Nutrients ; 16(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613064

RESUMO

Panax ginseng fruit is known to have various biological effects owing to its large amount of saponins such as ginsenosides. In the present study, ginseng berry juice was confirmed to be effective against acute inflammation. Ginseng berry juice was used for analysis of active constituents, antioxidant efficacy, and in vivo inflammation. A high-performance liquid chromatography method was used for analysis of ginsenosides. In an HCl/ethanol-induced acute gastric injury model, microscopic, immunofluorescent, and immunohistochemical techniques were used for analysis of inhibition of gastric injury and mechanism study. In a mouse model of acute gastritis induced with HCl/ethanol, ginseng berry juice (GBJ, 250 mg/kg) showed similar gastric injury inhibitory effects as cabbage water extract (CB, 500 mg/kg, P.O). GBJ dose-dependently modulated the pro-inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), and Interleukin-13 (IL-13). GBJ inhibited the activation of Nuclear Factor kappa bB (NF-κB) and suppressed the expressions of cyclooxigenase-2 (COX-2) and prostaglandin 2 (PGE2). The anti-inflammatory effect of GBJ is attributed to ginsenosides which have anti-inflammatory effects. Productivity as an effective food source for acute gastritis was analyzed and showed that GBJ was superior to CB. In addition, as a functional food for suppressing acute ulcerative symptoms, it was thought that the efficacy of gastric protection products would be higher if GBJ were produced in the form of juice rather than through various extraction methods.


Assuntos
Gastrite , Ginsenosídeos , Panax , Animais , Camundongos , Frutas , Ginsenosídeos/farmacologia , Inflamação/tratamento farmacológico , Etanol , Anti-Inflamatórios/farmacologia
5.
Plant Mol Biol ; 114(3): 38, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605193

RESUMO

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.


Assuntos
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Perfilação da Expressão Gênica , Parede Celular/metabolismo , Estresse Fisiológico
6.
Front Plant Sci ; 15: 1340884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606063

RESUMO

Introduction: Mummy berry is a serious disease that may result in up to 70 percent of yield loss for lowbush blueberries. Practical mummy berry disease detection, stage classification and severity estimation remain great challenges for computer vision-based approaches because images taken in lowbush blueberry fields are usually a mixture of different plant parts (leaves, bud, flowers and fruits) with a very complex background. Specifically, typical problems hindering this effort included data scarcity due to high manual labelling cost, tiny and low contrast disease features interfered and occluded by healthy plant parts, and over-complicated deep neural networks which made deployment of a predictive system difficult. Methods: Using real and raw blueberry field images, this research proposed a deep multi-task learning (MTL) approach to simultaneously accomplish three disease detection tasks: identification of infection sites, classification of disease stage, and severity estimation. By further incorporating novel superimposed attention mechanism modules and grouped convolutions to the deep neural network, enabled disease feature extraction from both channel and spatial perspectives, achieving better detection performance in open and complex environments, while having lower computational cost and faster convergence rate. Results: Experimental results demonstrated that our approach achieved higher detection efficiency compared with the state-of-the-art deep learning models in terms of detection accuracy, while having three main advantages: 1) field images mixed with various types of lowbush blueberry plant organs under a complex background can be used for disease detection; 2) parameter sharing among different tasks greatly reduced the size of training samples and saved 60% training time than when the three tasks (data preparation, model development and exploration) were trained separately; and 3) only one-sixth of the network parameter size (23.98M vs. 138.36M) and one-fifteenth of the computational cost (1.13G vs. 15.48G FLOPs) were used when compared with the most popular Convolutional Neural Network VGG16. Discussion: These features make our solution very promising for future mobile deployment such as a drone carried task unit for real-time field surveillance. As an automatic approach to fast disease diagnosis, it can be a useful technical tool to provide growers real time disease information that can prevent further disease transmission and more severe effects on yield due to fruit mummification.

7.
Foods ; 13(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611290

RESUMO

Phenolic compounds, especially tannins, are important for red wine quality. Wines made from cold-hardy hybrid grape cultivars have much lower tannin concentrations than wines from Vitis vinifera grape cultivars. This study assessed the phenolics content of berry tissues of three red cold-hardy hybrid cultivars in comparison to V. vinifera cv. 'Pinot noir' throughout development and ripening. Basic chemical properties, iron-reactive phenolics content, and tannin content were evaluated in the juice, skins, and seeds of Vitis spp. cvs. 'Crimson Pearl', 'Marquette', and 'Petite Pearl' and 'Pinot noir' at six time points from one week post-fruit set to harvest in 2021 and 2022. 'Crimson Pearl' displayed similar iron-reactive phenolics and tannin contents in juice, skins (22.6-25.4 mg/g dry skin and 8.0-12.2 mg/g dry skin, respectively), and seeds (12.8-29.8 mg/g dry seed and 4.2-22.0 mg/g dry seed, respectively) as 'Petite Pearl' and 'Marquette' at harvest in 2022. The hybrid cultivars showed a similar trend of phenolic accumulation as 'Pinot noir' but resulted in overall lower content in skins and seeds. Despite differences in developmental trends, the three hybrid grape cultivars displayed similar phenolic content at harvest ripeness. This is the first study examining the phenolic content of 'Crimson Pearl' and 'Petite Pearl' throughout berry development and ripening. This study provides important information for the wine industry to make informed decisions on making wine with these cultivars.

8.
Plant Dis ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616394

RESUMO

Coffee berry disease (CBD) is caused by Colletotrichum kahawae, a quarantine fungus still absent from most coffee-producing countries. Given the potential adverse effects on coffee berry production, it is a severe worldwide threat to farmers and industry. Current biosecurity management focuses on exclusion by applying quarantine measures, including certification of coffee plants and their products. However, methods for detecting C. kahawae by the NPPO (National Plant Protection Organization) laboratories still need approval. This research aims to functionally demonstrate, standardize, and validate a method for detecting and discriminating C. kahawae from other Colletotrichum species that may be present in coffee plant samples. The method proposes to use an end-point PCR marker for the mating type gene (MAT1-2-1) and a confirmatory test with a qPCR marker developed on the glutamine synthetase (GS) gene. The C. kahawae amplicons for the Cen-CkM10 marker exhibited specific melting temperature (Tm) values that could be readily differentiated from other tested species, including their relatives. Given the fungus's quarantine status, specificity was tested using artificial mixtures of DNA of C. kahawae with other Colletotrichum species and coffee plant DNA. The described method will enable NPPOs in coffee producing and exporting countries, especially Colombia, to prevent this pathogen's entry, establishment, and spread.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38619870

RESUMO

Valleytronics, identified as electronic properties of the energy band extrema in momentum space, has been intensively revived following the emergence of two-dimensional transition metal dichalcogenides (TMDCs) as their valley information can be controlled and probed through the spin angular momentum of light. Previous optical investigations of valleytronics have been limited to the visible/near-infrared spectral regime through which the carriers of most TMDCs can be excited. Monolayer 1T'-WTe2 with broken time-reversal symmetry provides a fertile platform to study the long-wavelength photonic properties in different valleys. Here, we employed a circularly polarized terahertz (THz) laser to selectively excite the valley of monolayer 1T'-WTe2 and demonstrate that the helicity-dependent photoresponse is generated via the photogalvanic effect (PGE). We also observed that the photocurrent is controlled by circular polarization and the external electric field. Because of the tunable Berry curvature dipole derived from the nontrivial wave functions near the inverted gap edge in monolayer WTe2, the bandgap can be tuned efficiently. Our results provide a versatile venue for controlling, detecting, and processing valleytronics and applications in on-chip THz imaging and quantum information processing.

10.
Plants (Basel) ; 13(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38498480

RESUMO

Epigenetics refers to dynamic chemical modifications to the genome that can perpetuate gene activity without changes in the DNA sequence. Epigenetic mechanisms play important roles in growth and development. They may also drive plant adaptation to adverse environmental conditions by buffering environmental variation. Grapevine is an important perennial fruit crop cultivated worldwide, but mostly in temperate zones with hot and dry summers. The decrease in rainfall and the rise in temperature due to climate change, along with the expansion of pests and diseases, constitute serious threats to the sustainability of winegrowing. Ongoing research shows that epigenetic modifications are key regulators of important grapevine developmental processes, including berry growth and ripening. Variations in epigenetic modifications driven by genotype-environment interplay may also lead to novel phenotypes in response to environmental cues, a phenomenon called phenotypic plasticity. Here, we summarize the recent advances in the emerging field of grapevine epigenetics. We primarily highlight the impact of epigenetics to grapevine stress responses and acquisition of stress tolerance. We further discuss how epigenetics may affect winegrowing and also shape the quality of wine.

11.
Adv Sci (Weinh) ; : e2307288, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509865

RESUMO

The anomalous Hall conductivity (AHC) in magnetic materials, resulting from inverted band topology, has emerged as a key adjustable function in spin-torque devices and advanced magnetic sensors. Among systems with near-half-metallicity and broken time-reversal symmetry, cobalt disulfide (CoS2) has proven to be a material capable of significantly enhancing its AHC. In this study, the AHC of CoS2 is empirically assessed by manipulating the chemical potential through Fe- (hole) and Ni- (electron) doping. The primary mechanism underlying the colossal AHC is identified through the application of density functional theory and tight-binding analyses. The main source of this substantial AHC is traced to four spin-polarized massive Dirac dispersions in the kz = 0 plane of the Brillouin zone, located slightly below the Fermi level. In Co0.95Fe0.05S2, the AHC, which is directly proportional to the momentum-space integral of the Berry curvature (BC), reached a record-breaking value of 2507 Ω-1cm-1. This is because the BCs of the four Dirac dispersions all exhibit the same sign, a consequence of the d-wave-like spin-orbit coupling among spin-polarized eg orbitals.

12.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540947

RESUMO

Carbon dots (CDs) have been proposed as photosensitizers in photodynamic treatment (PDT), owing to their excellent biological attributes and budding fruit preservation applications. In the present study, CDs (4.66 nm) were synthesized for photodynamic treatment to improve the quality attributes in post-harvest goji berries. The prepared CDs extended the storage time of the post-harvest goji berries by 9 d. The CD-mediated PDT postponed the hardness and decay index loss, reduced the formation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2•-) significantly, and delayed the loss of vital nutrients like the total protein, phenols, and flavonoids. The CD-mediated PDT improved the catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), phenylalanine ammonia-lyase (PAL), glutathione reductase (GR), and superoxide dismutase (SOD) activities, but did not improve polyphenol oxidase (PPO) activity. In addition, The CD-mediated PDT induced the accumulation of ascorbic acid (ASA) and glutathione (GSH). Overall, a CD-mediated PDT could extend the storage time and augment the quality attributes in post-harvest fresh goji berries by regulating the antioxidant system.

13.
Plant Physiol ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431527

RESUMO

Black goji berry (Lycium ruthenicum Murray) contains a rich source of health-promoting anthocyanins which are used in herbal medicine and nutraceutical foods in China. A natural variant producing white berries allowed us to identify two key genes involved in the regulation of anthocyanin biosynthesis in goji berries: one encoding a MYB transcription factor (LrAN2-like) and one encoding a basic helix-loop-helix (bHLH) transcription factor (LrAN1b). We previously found that LrAN1b expression was lost in the white berry variant, but the molecular basis for this phenotype was unknown. Here, we identified the molecular mechanism for loss of anthocyanins in white goji berries. In white goji, the LrAN1b promoter region has a 229-bp deletion that removes 3 MYB-binding elements and 1 bHLH-binding element, which are key to its expression. Complementation of the white goji berry LrAN1b allele with the LrAN1b promoter restored pigmentation. Virus-induced gene silencing of LrAN1b in black goji berry reduced fruit anthocyanin biosynthesis. Molecular analyses showed that LrAN2-like and another bHLH transcription factor LrJAF13 can activate LrAN1b by binding directly to the MYB-recognizing element (MRE) and bHLH-recognizing element (BRE) of its promoter-deletion region. LrAN1b expression is enhanced by the interaction of LrAN2-like with LrJAF13 and the WD40 protein LrAN11. LrAN2-like and LrAN11 interact with either LrJAF13 or LrAN1b to form two MYB-bHLH-WD40 (MBW) complexes, which hierarchically regulate anthocyanin biosynthesis in black goji berry. This study on a natural variant builds a comprehensive anthocyanin regulatory network that may be manipulated to tailor goji berry traits.

14.
J Phys Condens Matter ; 36(27)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38547533

RESUMO

We compute the magnetoelectric conductivity tensors in planar Hall set-ups, which are built with tilted Weyl semimetals (WSMs) and multi-Weyl semimetals (mWSMs), considering all possible relative orientations of the electromagnetic fields (EandB) and the direction of the tilt. The non-Drude part of the response arises from a nonzero Berry curvature in the vicinity of the WSM/mWSM node under consideration. Only in the presence of a nonzero tilt do we find linear-in-|B|terms in set-ups where the tilt-axis is not perpendicular to the plane spanned byEandB. The advantage of the emergence of the linear-in-|B|terms is that, unlike the various|B|2-dependent terms that can contribute to experimental observations, they have purely a topological origin, and they dominate the overall response-characteristics in the realistic parameter regimes. The important signatures of these terms are that they (1) change the periodicity of the response fromπto 2π, when we consider their dependence on the angleθbetweenEandB; and (2) lead to an overall change in sign of the conductivity depending onθ, when measured with respect to theB=0case.

15.
Int J Food Microbiol ; 416: 110687, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38554558

RESUMO

Foodborne illnesses involving raw and minimally processed foods are often caused by human noroviruses (HuNoV) and hepatitis A virus (HAV). Since food is contaminated usually with small numbers of virions, these must be eluted from the food surface and then concentrated for detection. The objective of this study was to optimize an ultrafiltration (UF) concentration method for HAV and HuNoVs present on various fresh and frozen produce. The detection range of the optimized method and its applicability to different food matrices was compared to the reference method ISO 15216-1:2017. Strawberry, raspberry, blackberry, lettuce, and green onion (25 g) were contaminated with HAV, HuNoV GI.7 and HuNoV GII.4 and then recovered therefrom by elution. A commercial benchtop UF device was used for the concentration step. Viral RNA was extracted and detected by RT-qPCR. From fresh strawberries, recovery of HAV loaded at 104 genome copies per sample was 30 ± 13 %, elution time had no significant impact, and UF membrane with an 80-100 kDa cut-off in combination with Tris-glycine elution buffer at pH 9.5 was found optimal. At lower copy numbers on fresh strawberry, at least 1 log lower numbers of HuNoV were detectable by the UF method (103 vs 104 GII.4 copies/sample and 101 vs 103 GI.7 copies/sample), while HAV was detected at 101 genome copies/sample by both methods. Except on raspberry, the UF method was usually equivalent to the ISO method regardless of the virus tested. The UF method makes rapid viral concentration possible, while supporting the filtration of large volume of sample. With fewer steps and shorter analysis time than the ISO method, this method could be suitable for routine analysis of viruses throughout the food production and surveillance chain.


Assuntos
Vírus da Hepatite A , Norovirus , Vírus , Humanos , Ultrafiltração , Vírus da Hepatite A/genética , Contaminação de Alimentos/análise , Norovirus/genética , Verduras , RNA Viral/genética
16.
BMC Pregnancy Childbirth ; 24(1): 194, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475705

RESUMO

BACKGROUND: Prenatal diagnosis of Berry syndrome, a rare combination of cardiac anomalies including aortopulmonary window (APW), aortic origin of the right pulmonary artery (RPA), interrupted aortic arch (IAA), hypoplastic aortic arch, or coarctation of the aorta (COA), poses a significant challenge. Due to the rarity of the disease, and the limited case reports available to features the complex malformation of Berry syndrome postpartum, this article introduces an innovative approach to visually showcase this unusual disease. The proposed method provides a comprehensive display of the structural deformities, offering valuable insights for clinical practitioners seeking to comprehend this condition. CASE PRESENTATION: In this report, we present a case where fetal echocardiography aided in diagnosing Berry syndrome, which was later confirmed through postpartum cardiovascular casting. Our experience highlights the importance of using the three-vessel view to diagnose APW and aortic origin of the right pulmonary artery. Additionally, obtaining true cross-sectional and sagittal views by continuously scanning from the three-vessel-trachea view to the long-axis view of the aortic arch is necessary to image IAA or coarctation of the aortic arch. CONCLUSIONS: Early and accurate prenatal diagnosis of Berry syndrome is feasible and our cardiovascular cast can perfectly display the microvascular morphology of the fetal heart, which may have great application prospects for postpartum diagnosis and teaching of complex cardiac abnormalities.


Assuntos
Defeito do Septo Aortopulmonar , Cardiopatias Congênitas , Gravidez , Feminino , Humanos , Estudos Transversais , Aorta Torácica/anormalidades , Aorta/anormalidades , Artéria Pulmonar
17.
Antioxidants (Basel) ; 13(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38539890

RESUMO

This study investigates the potential of formulated systems utilising haskap berry leaf extracts and dextran as carriers, to modulate both antioxidant and enzymatic inhibitory activities and their impact on the growth of specific bacterial strains. The analysis of antioxidant capacity, assessed through ABTS, CUPRAC, DPPH, and FRAP assays, revealed varying but consistently high levels across extracts, with Extract 3 (loganic acid: 2.974 mg/g, chlorogenic acid: 1.125 mg/g, caffeic acid: 0.083 mg/g, rutin: 1.137 mg/g, and quercetin: 1.501 mg/g) exhibiting the highest values (ABTS: 0.2447 mg/mL, CUPRAC: 0.3121 mg/mL, DPPH: 0.21001 mg/mL, and FRAP: 0.3411 mg/mL). Subsequent enzymatic inhibition assays demonstrated a notable inhibitory potential against α-glucosidase (1.4915 mg/mL, expressed as acarbose equivalent), hyaluronidase (0.2982 mg/mL, expressed as quercetin equivalent), and lipase (5.8715 µg/mL, expressed as orlistat equivalent). Further system development involved integration with dextran, showcasing their preserved bioactive compound content and emphasising their stability and potential bioactivity. Evaluation of the dextran systems' impact on bacterial growth revealed a significant proliferation of beneficial strains, particularly the Bifidobacterium and lactobacilli genus (Bifidobacterium longum: 9.54 × 107 to 1.57 × 1010 CFU/mL and Ligilactobacillus salivarius: 1.36 × 109 to 1.62 × 1010 CFU/mL), suggesting their potential to modulate gut microbiota. These findings offer a foundation for exploring the therapeutic applications of haskap berry-based dextran systems in managing conditions like diabetes, emphasising the interconnected roles of antioxidant-rich botanical extracts and dextran formulations in promoting overall metabolic health.

18.
Front Plant Sci ; 15: 1359506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434439

RESUMO

The genetic erosion of the European grapevine diversity in the last century has promoted the conservation of varieties in germplasm banks to prevent their disappearance. The study of these varieties is necessary as it would allow the diversification of the wine market, as well as provide a source of genes to face new pathogens or climate constraints. In this work, the grapevine varieties preserved in the "Estación de Viticultura e Enoloxía de Galicia" (EVEGA) Germplasm Bank (Ourense, Spain) were widely characterized, combining ampelography, ampelometry, agronomy, and phytopathology. Moreover, genetic characterization was carried out through the analysis of 48 single-nucleotide polymorphisms (SNPs). A Bayesian analysis based on the SNP data was carried out to define the genetic structure of the EVEGA Germplasm Bank, which allowed the differentiation of two main reconstructed panmictic populations (RPPs), confirming previous results obtained based on microsatellite markers (SSRs). A great diversity between varieties was found for almost every parameter evaluated for ampelography, ampelometry, phytopatology, phenology, and berry quality. A principal component analysis (PCA) performed with these phenotypical data allowed discrimination among some groups of varieties included in different genetic populations. This study allowed us to evaluate the grapevine diversity maintained in the EVEGA Germplasm Bank and characterize varieties of potential value for breeding programs of interest for the Galician viticulture.

19.
Glob Chang Biol ; 30(3): e17188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462677

RESUMO

Vegetation and precipitation are known to fundamentally influence each other. However, this interdependence is not fully represented in climate models because the characteristics of land surface (canopy) conductance to water vapor and CO2 are determined independently of precipitation. Working within a coupled atmosphere and land modelling framework (CAM6/CLM5; coupled Community Atmosphere Model v6/Community Land Model v5), we have developed a new theoretical approach to characterizing land surface conductance by explicitly linking its dynamic properties to local precipitation, a robust proxy for moisture available to vegetation. This will enable regional surface conductance characteristics to shift fluidly with climate change in simulations, consistent with general principles of co-evolution of vegetation and climate. Testing within the CAM6/CLM5 framework shows that climate simulations incorporating the new theory outperform current default configurations across several error metrics for core output variables when measured against observational data. In climate simulations for the end of this century the new, adaptive stomatal conductance scheme provides a revised prognosis for average and extreme temperatures over several large regions, with increased primary productivity through central and east Asia, and higher rainfall through North Africa and the Middle East. The new projections also reveal more frequent heatwaves than originally estimated for the south-eastern US and sub-Saharan Africa but less frequent heatwaves across east Europe and northeast Asia. These developments have implications for evaluating food security and risks from extreme temperatures in areas that are vulnerable to climate change.


Assuntos
Atmosfera , Ecossistema , Previsões , Temperatura Alta , África Subsaariana , Mudança Climática
20.
Planta ; 259(4): 74, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407665

RESUMO

MAIN CONCLUSION: The combined analysis of transcriptome and metabolome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum. Lycium barbarum L. has a high concentration of active ingredients and is well known in traditional Chinese herbal medicine for its therapeutic properties. However, there are many Lycium barbarum cultivars, and the content of active components varies, resulting in inconsistent quality between Lycium barbarum cultivars. At present, few research has been conducted to reveal the difference in active ingredient content among different cultivars of Lycium barbarum at the molecular level. Therefore, the transcriptome of 'Ningqi No.1' and 'Qixin No.1' during the three development stages (G, T, and M) was constructed in this study. A total of 797,570,278 clean reads were obtained. Between the two types of wolfberries, a total of 469, 2394, and 1531 differentially expressed genes (DEGs) were obtained in the 'G1 vs. G10,' 'T1 vs. T10,' and 'M1 vs. M10,' respectively, and were annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. Using these transcriptome data, most DEGs related to the metabolism of the active ingredients in 'Ningqi No.1' and 'Qixin No.1' were identified. Moreover, a widely targeted metabolome analysis of the metabolites of 'Ningqi 1' and 'Qixin 1' fruits at the maturity stage revealed 1,135 differentially expressed metabolites (DEMs) in 'M1 vs. M10,' and many DEMs were associated with active ingredients such as flavonoids, alkaloids, terpenoids, and so on. We further quantified the flavonoid, lignin, and carotenoid contents of the two Lycium barbarum cultivars during the three developmental stages. The present outcome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum, which would provide the basic data for the formation of Lycium barbarum fruit quality and the breeding of outstanding strains.


Assuntos
Lycium , Lycium/genética , Transcriptoma/genética , Melhoramento Vegetal , Metaboloma , Carotenoides , Flavonoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...